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Abstract. The gauge equivalence (GE) of U models associated with non-compact Grassman- 
nian manifolds is investigated with emphasis on the necessary restrictions for the choice 
of gauge elements in such cases. The importance of GE in solving a non-linear system 
with the help of inverse scattering data of its gauge related counterpart is demonstrated. 
The gauge relations between generalised Landau-Lifshitz ( LL) and non-linear Schrodinger 
( NLS) type equations and also between non-linear U models and generalised ‘sine-sinh- 
Gordon’ equations for non-compact SU( p, q ) / S (  U( U, U )  x U (  s, I ) )  manifolds are estab- 
lished. Using H-gauge invariance of LL the G E  is extended to some higher-order specific 
non-linear systems. The gauge connection among various LL and NLS equations are 
schematically represented. Along with the recovery of earlier results important new results, 
some with significant non-compact structures, are discovered. 

1. Introduction 

The gauge connection between different non-linear dynamical systems and the corre- 
sponding (T models has received much attention in the last few years. Among such 
systems the gauge equivalent Landau-Lifshitz equation ( LLE) and non-linear Schrodin- 
ger equations (NLSE) and also non-linear (T model and sine-Gordon (SG) equations 
deserve special attention due to their physical relevance. After the pioneering work 
of Lakshmanan (1977) and Zakharov and Takhtajan (1979) the gauge relation between 
the first pair of systems has been extended to higher-order unitary groups (Orfanidis 
1980), to compact manifolds (Honnerkamp 1981) and also to unconstrained SU(N)  
models (Sasaki and Ruijgrok 1982). The relation between SG and (T models is due to 
Pohlmayer (1976) and Lund and Regge (1976) and was also reformulated in the 
standard form and extended to C P N  by Eichenherr and Honnerkamp (1981). Besides 
the non-linear systems mentioned above, there are various other types of integrable 
equations, e.g. NLSE of the repulsive type (Zakharov and Shabat 1973), ‘attractive- 
repulsive’ NLSE (Makhankov 1981), the sinh-Gordon equation (Podgribkov 1982) and 
also systems like the derivative NLSE (Kaup and Newel1 1978) and mixed NLSE (Wadati 
et a1 1979, Chen et a1 1979, Gerdjikov and Ivanov 1982) equations. The aim of this 
investigation is to generalise the gauge equivalence scheme to the non-compact Grass- 
mannian manifold SU(p, q ) / S (  V(r ,  s) x V ( u ,  v ) )  and to extend it so as to cover all 
the above systems. Through the H-gauge transformation we obtain higher-order 
non-linear systems which enable us to gauge connect a large number of specific 
equations known in the literature. On concrete models we also demonstrate how to 
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exploit the gauge relations to find the inverse scattering data, Jost functions and soliton 
solutions of U model systems. 

The paper is organised as follows. In 0 2 the general scheme of gauge equivalence 
between non-linear systems is outlined and applied to establish the relation between 
LLE and NLSE with a non-compact manifold. Particular examples yield known as well 
as new results. The H-gauge transformation generates some higher-order special types 
of equations. In 0 3 we find the generalised LLE-type systems equivalent to derivative 
and mixed NLSE and represent them as different orbits with non-degenerate Poisson 
brackets. Through the H-gauge transformation we generate here a number of higher- 
order equations. Section 4 demonstrates, in particular cases of attractive and repulsive 
scalar NLSE, the applicability of gauge equivalence for finding soliton solutions and 
other information. Section 5 deals with the non-linear U model with non-compact 
manifold and its equivalent generalised sine-sinh-Gordon equations. Section 6 contains 
the conclusions. 

2. LLE with non-compact Grassmanniao manifold and gauge equivalent NLSE 

It is well known that a given integrable non-linear system is related to a linear one 
ax = U@, @, = V @ ,  the compatibility condition of which yields the given non-linear 
equation. Under the local gauge transformation g ( x ,  t )  E G, G being a Lie group, the 
Jost function changes: 

@ +  @'= g-' @, a: = U'@', @; = V @ ' .  (2.1) 

For A = A, belonging to the continuous spectrum, @ E G and U, V E 3, 3 being the 
corresponding Lie algebra. We may fix the gauge element by choosing g ( x ,  t ;  A,) = 
@ ( x ,  t ;  A ) ~ * = & E  G which gives 

(2.2a) 

(2.2b) 

U' = g-'  U g  - g - ' g ,  = g - y  U - U , ) g ,  U ( X ,  t ;  A,) = U, 

V ( X ,  t ;  A,) = V, V'  = g-' v g  - g- 'g ,  = g - l (  v -  V,)g,  

with the new gauge equivalent equation as 

U :  - v:+ [ U',  V']  = g - ' { (  U, - V , + [  U, V I )  - (  U,, - vox +[ U,, V o ] ) } g  = 0.  (2.3) 

If the original non-linear equation is an integrable system which can be solved by 
using inverse scattering theory with scattering matrix T given by 0- = @+ T, where @* 
are Jost functions with asymptotes given at fa, then under (2.1) the scattering matrix 
of the gauge transformed system remains unchanged 

T'= @'+-'&L =@>-'To@'- = @'+-'T0gI'@- = @'- 'g; '@-  = T (2.4) 

where g ,  = @*(A = Ao) and To = T(A  = Ao). This helps us to avoid the IST investigation 
of a system if we know the corresponding information on its gauge-connected counter- 
part. The integrability property is also obviously preserved under such transformations. 
Note that since only for A = A, chosen from continuous spectrum @ has fixed group 
properties, the gauge elements g E G must be taken only at A = A,. Since the domain 
of A, may differ for compact and non-compact cases, depending on the boundary 
conditions, its value should be chosen carefully. This fact will be illustrated later with 
concrete examples. 
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We propose a generalised Landau-Lifshitz equation with non-compact manifold: 

S E M = G/H, G = W P ,  q ) ,  
1 s, =,E Sxxl; 

H = S(  U( U, U )  x U( r, s))  (2.5) 

where u + u = m ,  s + t = n ,  u + r = p ,  u + s = q ,  p + q = m + n = N ,  and find its gauge 
equivalent system using the above scheme. The linear system corresponding to (2.5) 
is given by 

U = iAS, (2.6) V = 2i S 2A S + ;A [ S, S, 3 ,  S = ( m  + n)/2mn 

with S satisfying 

S 2  = a I  + bS, S=rs+r=s 
where 

(2.7) 

a, b are constants and Ii a unit i x i matrix. G/H being a symmetric space it is always 
possible to express S = gX g-', g E G and 

which gives the gauge transformed operators in the form 

U ' =  g-'Ug = g-'g, = iAZ+A, L, = A (2.10a) 

V'=g-'Vg-g-'g, =2ii?i2h2X+AX[X, A]+ B Lo= B. (2.10b) 

Taking A and E in the explicit form 

with $=rI+T2,  &=-Ai,  T r ( A l + A 2 ) = 0 ,  Ai=.: and b,=($$-pI,,,+H:, b2= 
-($$- p (  m/n)I,)  + If:. The compatibility condition of (2.10) yields directly the 
following matrix NLSE 

i+, + rL, + 2( $$$ - p $ )  + 4i8A& = 0. (2.12) 

We have set A, = iAoI,,,/m and A2 = -iAoIn/ n in deducing (2.12), while more general 
cases will be discussed below. Note that for trivial boundary conditions A. is arbitrary 
real and may be trivial (Zakharov and Takhtajan 1979), but for a non-trivial boundary 
condition which is important in non-compact cases A. is non-trivial. Under the 
transformation 4' = R2J/R,  (2.12) is covariant if 

J/ '& ' * '=  R 2 * ' ( ~ 1 R , ) m 2 R 2 ) 4 K  = R2(*$*)R, (2.13) 

i.e. when 

RI RI  = R2R2 = I or RI E V(U, U), Rz E U( r, s). (2.14) 
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We therefore conclude that LLE (2.5) with non-compact Grassmannian manifold 
SU(p, q ) / S (  U ( u ,  U )  x U ( r ,  s ) )  is gauge equivalent to matrix NLSE (2.12) with 9 = 
U (  u, U )  x U (  r, s )  as the internal symmetry group. The number of independent field 
variables +, 6 is 2mn which also coincides with 

dim M =dim G-dim H = [ ( m +  n) ' -  11-(m2+ n 2 -  1 )  = 2 m n  
showing the number of independent fields in LLE. 

2.1. Examples 

Let us consider (2.5) with u = m, U = 0 and r = p - m > 0, i.e. with 
SESU(P, q ) / S ( U ( m ) x  U ( p - m ,  4 ) )  (2.15) 

and the following particular cases. 
(i)  p = N, q = 0, r, = T2+ I hence s= S+ which recovers the equivalence of LLE 

with compact manifold S E SU( N ) / S (  U (  m )  x U (  n ) )  and the matrix NLSE (MNLS)  

(Honnerkamp 1981). m = 1 yields LLE with SE CPN and gauge connected vector NLSE 

(VNLSE) of attractive type (Orfanidis 1980). N = 1 gives the equivalence of standard 
LLE with SE S2 and the scalar NLSE (SNLS) of attractive type (Zakharov and Takhtajan 
1979). Thus we recover the results known previously and moreover get the following 
results from the relevance of non-compactness. 

(ii) p =  m, q =  n gives r, = I, r2=-I  and J=-+'. That is LLE with 
SU( p ,  q ) / S (  U (  p )  x U (  q ) )  is gauge equivalent to MNLS of repulsive type 

(2.16) i$, + GXx - 2($$+$ - &) = 0. 

p = 1 connects LLE with SU(1, N - l ) / U ( N  - 1 )  and VNLS of repulsive type 

(2.17) 

N = 2 gives a SU(1, l ) / U ( l )  version of LLE and related repulsive SNLS (Kundu 1982). 
(iii) m = 1 reduces (2.15) to LLE with non-compact manifold SU(p, q ) /  U ( p  - 1,  q )  

and a 9 = U (  p - 1,  q )  'attractive-repulsive' VNLSE 

a = l  b = l  
(2.18) 

which in limiting cases leads again to VNSLE of attractive or repulsive type. The above 
equivalence is schematically depicted in figure 1. 

2.2. Extension of gauge equivalence to higher-order and special types of NLSE 

It is not difficult to check that from a standard NLSE (2.12) through local gauge 
transformation i + h;'+h1 relative to group element 

h = ( h1 O )  E H  = S (  U(U, U )  x V ( s ,  t ) )  
0 h2 

one gets a new higher-order equation: 
i+t + + 2( +$+ - CL+) + 4ihowx - [GI 8 w:  - H:+) 

+ 2(+,H; - HZ,+,) + ( $Hix - H;,IL) 

+ 2( HZ,+H:)] + ( H;)2+ + +( HL)2 = 0 (2.19) 
where HL = h;' d,hi corresponding to the linear system (2.11) in the general case. 
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M N L S -  

V N L S -  

S N L S -  

Figure 1. Gauge equivalence between generalised LLE with non-compact Grassmannian 
manifold and NLSE with their different reductions. (i) represent ‘attractive’ or ‘repulsive’ 
while (+ -) represents ‘attractive-repulsive’ type cases. 

Since under h ( x ,  t )  E H gauge transformation, the U model field is invariant 
S’= g‘zg’-’ = g h z h - ’ g - ’  = g x g - ’  = s (2.20) 

the LLE system remains unchanged under such transformations and consequently along 
with NLSE (2.12) it is equivalent to all of its transformed forms like (2.19). We consider 
two interesting particular cases of (2.19) setting m = n = 1 for convenience, i.e. h E U( 1) 
and -HL = H$ =io,. 

(i) The case 8 = 8(x), a = 8, being an arbitrary smooth function of x gives NLSE 

with x dependent coefficients 

i+I + +xx *2(144’-p)++ 4ia+,+ 2(iax -2a2)+ = 0. (2.21) 

e x  = w4*, er = *is(++: - + * + X I  (2.22) 

(ii) The choice of 8, as ‘particle’ and ‘current’ densities 

on the other hand reduces (2.19) to a higher-order system (HNLS) 

i+,+ + x x * ~ l ~ 1 2 ~ + 4 ~ 2 1 + 1 4 ~ * 4 i b ( l + ~ 2 ) x ~  =o. (2.23) 

Note that (2.22) is compatable ( e x I  = OIX) due to equation (2.23). 
It may also be shown that (Kundu and Pashaev 1983) SU(2) LLE with easy axis 

( A > O )  anisotropy (ALLE) is gauge equivalent to attractive SNLS and the easy plane 
case ( A  < 0) to ZakharOV-AKNS system, while the anisotropic SU( 1, 1) LLE is equivalent 
to repulsive SNLS. 

3. Extended LLE and their equivalent NLS type equations 

Using a similar technique to that applied above for standard NLSE, we may also find 
the extended LLE, gauge equivalent to various NLS type equations (Kundu 1984). In 
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particular scalar derivative NLSE( DNS) 

qr + qxx * i a (I 91 ’9 1, = 0 (3.1) 

is equivalent to extended LLE( DLL) 

S,+(1/2i)[S, S x x ] - 4 a h ~ S , + ( 1 / 4 a h ~ ) S ’ , = 0 ,  a>o. (3.2) 

iqr+q,, *Plql2q*i~(lql2q),=O, a > o , p > o  (3.3) 

S, -t (~/2i)[S,  S,,] + $3, + pS’,+ id[& S,] + d[SS,, S,,] = 0 (3.4) 

On the other hand mixed scalar NLSE(XNS) 

is gauge related to a new integrable system (XLL) 

where E, y, p and d are different constants depending on ho, a and P. The +(-) sign 
in (3.1) and (3.3) corresponds to S E  SU(2) /U( l ) (SU( l ,  l ) / U ( l ) )  in (3.2) and (3.4). 
Parameters in (3.4) are simplified in the following limiting cases 

d =0,  E = 1,  p = o ,  y = 4(2P)”2A0, for a = 0, P # 0 ( 3 . 5 ~ )  

d =0 ,  E = 1 ,  p = 1 /4ah& y = -4ah& for a # 0, p = 0. (3.56) 

Note that ( 3 . 6 ~ )  leads to standard LLE while (3.66) leads to DLL (3.2). 

3.1. Higher-order NLS type systems 

Similarly to the U(1) gauge transformation discussed in Q 2.2 for NLSE, the choice 

e x  = WI2, er = *is(qq: - q*qx)+$a61q14 (3.6) 

leads XNS (3.3) to a new HXNS 

i Or + Ox, * i 0 (I 91 ’ O), * P I OI2 Q + 6 (46 + a )I Q14Q * 4i 6 ( 1  O12),Q = 0. (3.7) 

The limiting case a = 0, P # 0 recovers HNLS (2.23) while the other extreme a # 0, 
p = 0 generates higher-order derivative NLS( HDNS) 

~ O , + O ~ , * ~ ~ ( I O I ~ O ) ~ + ~ ( ~ ~ + ~ ) I Q I ~ Q * ~ ~ ~ ( I Q I ’ ) , Q = ~ .  (3.8) 

It is remarkable that the particular choice a = -48 leads it further to the Chen-Lee-Liu 
(CLL) equation 

(3.9) iQ, + Ox, * i.lQ120x = 0 

iQ,+ Q,, +&Y’~Q~*QT~~Q’Q: = 0. 

whereas the choice a = -26 gives a Gerdjikov-Ivanov type one ( G I I )  equation 

(3.10) 

If however we set a = -48, P # 0, (3.7) yields CLL-NS 

i Or + Ox, * PI 012 O * ia I Q I ’ O x  = 0 (3.11) 

while for a = -26, P # 0 we get the Gerdjikov-Ivanov type two ( ~ 1 2 )  equation 

ior + ox, * P I O ~ ~ O + ~ ~ I O I ~ O O + ~ ( Y Q ’ O :  = 0. (3.12) 

Therefore all equations (3.8)-(3.10) are naturally gauge connected with DNS while 
(3.11), (3.12j and (3.7) are related to XNS. 
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3.2. Representation of LLE and its extensions as orbits 

Non-degenerate Poisson brackets for functions on G* are associated with orbits of the 
algebra action in it (Faddeev 1983). Hence for a function 

U , ( A ) = ~ ~ A - ~ - ~  (3.13) 

the Poisson brackets give 

6;)  = C z b S r + * ,  n , m k O  (3.14) 

& being the structure constant. We demonstrate that in the light of the above general 
approach the LLE and its extensions may be defined as different orbits. 

For SU(2)(SU( 1 , l ) )  LEE we may set 6: = S a ( x ) ,  6: = 0, m k 1 which gives 

{["ax), 6 % ~ ) )  = i f z b t 3 x )  a(x - Y )  ( 3 . 1 5 )  

gabsa (X)sb (X)  = 1 defining an orbit. In the case of DLLE ( 3 . 3 )  identifying and t2 = 
6; = S a ( x ) ,  6; = ifabcSbS: and 6: = 0, m k 2 we get the-algebra 

( 3 . 1 6 ~ )  

(3 .16b)  

= f a b c t X Y )  S ( X - Y )  ( 3 . 1 6 ~ )  

and similarly 

<S:(x , ,  t t ( X ) )  = 0 (3 .16d)  

exactly agreeing with the formula (3.14).  The case of X L L  can also be similarly treated. 
In figure 2 we schematically depict the relation between different NLS and LLE systems 
found above. 

Figure 2. Extended gauge equivalence scheme of different LLE and NLS type equations. 
Here H = U ( l )  and G = S U ( 2 )  or SU(1, 1 )  correspond to attractive (+) or repulsive (-) 
cases, respectively. 
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4. Construction of LLE solutions from NLSE 

In earlier research work the main emphasis has been given to establishing the gauge 
equivalence between different dynamical systems without paying much attention to 
the utilisation of such a beautiful relationship. We aim to demonstrate here some 
applications of such an equivalence. In particular, we use the inverse scattering data 
of NLSE which has been well investigated to explore such information for the LLE 

model, the individual study of which is sometimes very tedious. As shown in P 2, the 
Jost function of LLE @; may be expressed through that of NLSE as 

@ &  = @,:@a 

moa = @.,(A = A,) and @a =(A,  4J 
where 

with 

4.,, 4, form the basis in the space of Jost solutions of the spectral problem connected 
with NLSE. The subscript a = f indicates that the asymptotes defined at x + fa and 
E = +1 correspond to NLSE of attractive and repulsive type, respectively, relating to 
LLE with S E  SU(2)/U(1) and SU(1, l ) / U ( l )  manifolds. As already shown in 0 2 the 
scattering matrices of the gauge equivalent LLE and NLSE are identical. The field 
solution of LLE may be expressed through NLSE Jost functions as 

s, = @,:c73@c)+ = To(@;:c+3@o-) T,’ = T,S- T i ’ .  (4.1) 

Both S, are LLE solutions. We take for definiteness S = S, and obtain 

4.1. NLSE of attractive type and SU(2)/U(l)  LLE 

NLSE of the attractive type have been well investigated using the inverse scattering 
method (Zakharov and Sabat 1971). The corresponding Jost function for the N-soliton 
solution is given by 

(4.3) 

where 4, = 4(x ,  A n )  and A n  is the discrete spectrum. For simplicity we consider N = 1. 
Hence the one-soliton solution of NLSE is 

N 

= -2 c Cn+X(X) exp(iAnx)lN,, = -2i77 exp(iy) sech y (4.4) 
n 

where A ,  = 5 + i7, y = 25x + 4( t2 - 7 ’ )  t + +,, and y = 277 ( x  - x, - 45t). 
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On the other hand from (4.3) one obtains 

&= - p ( A o )  exp[i(A - Aox)] sech y 

4; = [ 1 - p ( A o )  exp(-y) sech y ]  exp(-iAox) 

S, = 1 - 21pI2 sech’ y 

(4.5) 

with p(Ao) = iv/(A - A o ) ,  which gives directly from (4.2) the LLE soliton solution 

and 
arg(S’)=2Aox- y-tan-’{[(Ao-()/~] cothy). (4.6) 

Note that for A. = 0 (4.6) coincides with the solution found by Takhtajan (1977) through 
the direct IST scheme. 

4.2. N L S E  of repulsive type and non-compact sU(1, 1)/U(1) L L E  

The inverse scattering programme for repulsive type NLSE becomes complicated due 
to a non-trivial boundary conditiont limlxl+m lI,!Jl*+ p2. Here ( = *(A2-p2)1’2 actually 
serves the role of spectral parameter and ( ( A )  is defined on a two-sheeted Riemann 
surface with cuts at (-m, - p )  and (p ,  CO).  The bound states are given at tfl = 
( A i  -p2 )” ’=  iv, with p2.  The Jost solution corresponding to the one-soliton 
solution is given by (Zakharov and Shabat 1973) 

(4.7) 

The Hamiltonian of the gauge equivalent non-compact model may be given by 
X ic 

H =  [ Tr(S:)dx=! [ (S:’-Sc-Sy)dx 
J -X L J-cc 

(4.9) 

with S3’ - S” - SI2 = 1, S = Sn7, E SU( 1, l ) /U(  1). The soliton solution to the corre- 
sponding field equation may be easily obtained from (4.2) with E = 1 and using (4.7). 
Note that since A. must be from a continuous spectrum, we have the restriction 
lAol > p = 1. For the choice A o -  to = y we get the solution 

S3 = 1 + (2y2/ v’) tanh’ y 

arg( St) = 25x + tan-’[ ( y /  v) tanh y ] .  
(4.10) 

In this case the soliton velocity U = 2y = 2(A0 - to) is restricted, 2 > U 2 0, though for 
general choice of A. the velocity is arbitrary. 

5. Non-linear v model with non-compact Grassmannian manifold and the gauge 
connected equations 

We apply here the ideology of gauge equivalence to the non-linear U model theory 
(Honnerkamp and Eichenherr 1981). The linear system of the equivalent generalised 

i Trivial conditions exhibit no discrete spectrum and hence no regular soliton solution. 
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‘sine-sinh-Gordon’ type equation may be given by 

U = A C + A ,  V =  A-‘B, U, V E  SdP,  4) .  

For m = 1 the structure of the operators is of the form 

(5.1) 

with 
C =  (cT,. . . , cp-2,  * icp*-,, . . . ,  CL-^) 

cp = ((Po, 91 9 . .  . ,  (Pp-2, W p - 1 , .  . ., W N - 2 )  

(5.3) 

and X.”,:: l ( ~ ~ / ~ - ~ b = ~ - ~  I(Pb12 = 1. The compatability condition of (5.1) gives the relation 

* *  * . *  . *  
N-2 

and the equation of motion 

id,co = (Po - (Po*, d,Ck = -(Pk. ( 5 . 5 )  

S , , + ; ( S , S , + S , S , ) S = o ,  S 2 =  1 (5 .6 )  

The gauge equivalent non-linear U model is given by 

with S E  SU(p, q) /U(p  - 1, q ) .  The limiting case p = N recovers the known compact 
c p N u  model. The case p = 2, q = 1 reduces (5.3) to Ip112 - Ip2(’ = 1. Hence choosing 
cpl = cosh p exp(ia) and (p2 = sinh p exp(i4) we get the sine-sinh-Gordon equation 

p5, = sinh p [  - a,)( 4, + co)/cosh p - cos a] 

c0, = 2 cosh p sin a (5.7) 

with co = (tanh’ p$, - a,)(2+tanh2 p ) - ’  equivalent to the non-linear U model with 
S E  SU(2, l ) / U ( l ,  1). In the limiting case a = $ = O ,  co=O answering to the O(2 , l )  
subgroup of U(2,1), (5.7) reduces to the sinh-Gordon equation, while for p =0,  
co = -a,/2 to the sine-Gordon equation. p = 1, q = 1 gives also the sinh-Gordon 
equation 

t,!J,, tanh p = -[3 sinh p sin a + (co+ &) cosh-’ p + Pp( CL, - a,)] 

Pr, + 4 sinh p = 0 

and the gauge related U model with SU( l , l ) / U (  1). The p = 2 ,  q = 0 case recovers the 
gauge equivalence of the sine-Gordon and SU(2)/U(l)  U models. 

6. Conclusions 

We have shown gauge equivalence between generalised LLE with non-compact mani- 
folds and matrix NLSE. Such generalisations, apart from their mathematical beauty, 
may also have physical applications in describing spins of different sorts or multi- 
chained magnetic crystals with interchain coupling (Ovchinnikov and Onoshuk 1978, 
Kundu and Kundu 1983). The coupling constants of different signs may be described 
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by non-compact model structures. Extended LLE gauge equivalence to DNS and XNS 

also presents new integrable spin models. A higher-order NLS type equation gauge 
connects a number of known equations and also generates new integrable systems. 
Applications of gauge equivalence for finding soliton solutions and other IST informa- 
tion show that using the information about any system one can, in principle, solve a 
large number of gauge connected equations which manifests the importance of estab- 
lishing such gauge relations. 
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